
Michael Lowry, NASA Ames Research Center
Daniel Dvorak, Jet Propulsion Laboratory, California Institute of Technology

THE REALM OF SPACE EXPLO-
ration, the biggest obstacle to widespread
application of autonomy in flight software is
not technical feasibility; it is doubt about its
trustworthiness as a replacement for human-
in-the-loop decision-making. Autonomous
control systems raise difficult verification
and validation issues. V&V techniques are
needed that significantly increase confidence
in these decision-making systems.

The key to acceptance of this technology
is not hit-or-miss testing but thorough V&V
methods that yield guarantees. We've devel-
oped such a method that applies two analytic-
verification approaches: design-time model
checking that guarantees that specific condi-
tions are never violated, and runtime embed-
ded behavior auditors to verify that the imple-
mented integrated system respects similar
conditions. Together, they make verification
activities part of design and development, not
just a back-end step.

The challenges of V&V

Traditional space missions without auton-
omy are already inherently risky. Charles Per-
row identifies two risk dimensions for high-
risk technologies: interactions and coupling.
Complex interactions are those of unfamiliar
or unplanned or unexpected sequences, and
are either invisible or not immediately com-
prehensible. Tightly coupled systems have
more time-dependent processes that cannot
be delayed or extended. His chart (see Figure
1) identifies space missions as having both
characteristics, thus placing them in the quad-

TO PROVIDE RIGOROUS VALIDATION AND VERIFICATION OF
AUTONOMOUS SOFTWARE, THE AUTHORS APPLY TWO

ANALYTIC- VERIFICATION APPROACHES: DESIGN-TIME MODEL
CHECKING AND RUNTIME BEHAVlOR AUDITING.

rant depicting the riskiest technologies.
Flight-project managers are therefore un-

derstandably reluctant to risk a science
mission on unproven technologies. Flight-
qualification programs for new technology
such as NASA's New Millennium and X2000
are essential to overcome this initial hurdle.
However, flight-project managers also need
to be convinced that any technology can be
verified and validated in the specific context
of their mission. This poses a special chal-
lenge to autonomy software, because tradi-
tional V&V approaches are inadequate for it.

Traditional spacecraft control uses se-
quences: deterministic, time-stamped, linear
series of commands. Their roots go back to
electromechanical controls similar to those for
washmg machines, although today sequences
are implemented as software instructions.
Sequences are validated mainly through man-
ual review by several engineering teams (for
example, thermal and power) to ensure that
the sequences achieve their goals without pos-
ing hazards to the spacecraft. This type of val-
idation is possible precisely because the engi-
neering teams need to consider only one
execution path. Even minimal generalizations
of straight-line sequencing are viewed as risky.
One such example is conditional sequencing,

SEPTEMBER/OCTOBER 1998 1094-7167/98/$10.00 Q 1998 IEEE

where a sequence has top-level conditionals-
for example, if the spacecraft is out of the
planet's shadow, turn the solar panels toward
the sun.

In contrast, autonomy software for space-
flight compactly encodes at least millions, if
not billions, of execution paths. Traditional
approaches to the V&V of sequences cannot
scale to this level.

Also, autonomy software is inherently con-
current-that is, multiple processes achieve
different goals, or subgoals execute in paral-
lel. Concurrent-task software is easier to pro-
gram than traditional sequences because the
means of achieving each goal can be designed
separately. Because of the closed-loop nature
of autonomy, each goal being achieved repre-
sents a separate thread. However, unintended
interactions between threads can lead to fai-
ures. These failures are very difficult to find
and debug through testing. More thorough
means of finding concurrency errors are
required.

Analytic verification approaches can meet
theV&V challenges of autonomous software.
They can scale to handle the complexity of
autonomous control, and can calculate wheth-
er the concurrent-software designs are correct
and monitor their execution.

45

Linear Complex
Interactions

Figure I . The two dimensions of risk for high-risk technologies.’ With complex interactions and tight coupling, space
missions fall into the quadrant depicting the riskiest missions.

Design-time analytic-
verification approaches

Unlike traditional testing, which samples
a digital system’s behavior, analytic verifi-
cation (also calledfomal verz3cation) math-
ematically calculates the system’s behavior.
Traditional testing is limited because the
number of tests required to achieve statistical
confidence in the system’s reliability grows
dramatically-both as a function of the sys-
tem’s complexity and as a function of the
desired degree of confidence. The Pentium
floating-point bug illustrates this. Under rare
circumstances, the floating-point circuitry of
the early Pentiums produced an incorrect
result. Extensive testing before the Pentium’s
release did not reveal these circumstances.

However, these circumstances could have
been revealed through analytic-verification
algorithms. For this reason, after the Pentium
floating-point bug, digital-hardware devel-
opers have invested heavily in formal-verifi-
cation techniques to complement simulation
and testing. Results have been encouraging
and are regularly reported in arenas such as
the International Conference on Computer-
Aided Verification? Excellent results have
also occurred in the verification of computer
firmware (for example, complicated hierar-
chical memory protocols), communication
protocols, and operating-system services.

To date, two main approaches to design-
time formal verification exist: computer-
based theorem proving and model checking.

46

Computer-based theorem proving. This
approach can verify unbounded (that is, infi-
nite state) systems. Theorem-provers that are
often used in software verification include
PVS3 and ACL2.4 Theorem-proving has two
disadvantages. First, it requires an expert’s
sustained effort over a substantial time per-
iod. Second, it provides little direct informa-
tion if the system is not correct. The inabil-
ity to find a proof of correctness is usually
interpreted as indicating that the expert needs
to explore a different approach, not that the
proof doesn’t exist.

Typically, an expert will interact with a
computer-based theorem prover for several
work-months to generate a mechanically ver-
ified proof of the correctness of some key
design or subsystem of a digital system. The
effort usually focuses on developing an
induction hypothesis that guarantees that if
a system starts in a state obeying the cor-
rectness criteria, each transition of the sys-
tem to the next state will guarantee those cri-
teria. Carrying out a successful proof by
induction requires the expert to be skilled at
finding invariants that are always true of the
system and that can be added as lemmas to
support the induction hypothesis.

Although computer-based theorem provers
have become increasingly powerful, perform-
ing many of the smaller proof steps automati-
cally, the problem of finding suitable invari-
ants has prevented this approach’s automation.
Research toward automated invariant genera-
tion is encouraging, but completely general
algorithms will remain elusive.

Model checking. This approach is a mathe-
matical technique for verifying and debug-
ging concurrent or real-time systems mod-
eled as interacting finite-state machines.
Given a model and a property, a model
checker searches for traces of the model that
violate the property. Properties can be invari-
ants, temporal properties (that is, defined
through modal operators such as eventu-
ally), or in the case of real-time model
checkers, metric time constraints defined
through linear relations. A trace is an inter-
leaved sequence of states (or, dually, transi-
tions) of the finite-state machines. If the
checker finds no traces violating the prop-
erty, and the algorithm runs to completion,
the property is verified.

Model checkers differ from simulators in
that they explore all relevant traces. In other
words, they explore all realizable paths through
the graph of states that can be reached from the
initial state and that match the property being
checked. They also enable checking much
richer concurrency properties than is typical
of simulators. Some model checkers are sim-
ilar to theorem provers in that they manipulate
symbolic descriptions of the transition rela-
tion. However, model checkers do not perform
induction and hence cannot verify systems
with unbounded state. On the other hand, they
are completely automatic and thus more prac-
tical for verification in a spiral development
process than theorem provers.

Design verification using
model checking

Model checkers are particularly well-
suited to exploring the relevan; execution
paths of nondeterministic systems with mul-
tiple processes running in parallel. This
makes them well-adapted to verification and
debugging of autonomy software. The num-
ber of possible interleavings of the executions
of parallel processes has an upper bound pro-
portional to the product of the number of local
states traversed in the execution of each
process. Anticipating all these interleavings
can be difficult for a human designer; model
checking can find subtle, pernicious interac-
tions that violate correctness conditions.

For example, an unexpected interaction
between a communication process, a weather-
data process, and an information-bus process
caused the Mars Pathfinder software to enter
a quasi-deadlock. This resulted in Pathfinder
resetting itself because of the timeout of a

IEEE INTELLIGENT SYSTEMS

funcall-w-m-properties (props closure)
unwind-protect(

do
critical section(...) ;
achieve-lock-properties(1ocks);
funcall(c1osure);

Od , +
release-locks(1ocks));

(a1

maintain-properties-daemon
loop-forever do

if check-locks
do automastic recoveryt

if not (changed? (...count...))
then wait-for(...);

od

Figure 2. Simplified extracts of the executive code, converted to on Algol-like syntax: (0) the funcall-with-maintained-property construct; (b) the
maintain-properties-daemon.

watchdog timer, and in the loss of several
days’ worth of science. A subsequent model-
checking replication of the interaction of these
three processes duplicated this bug.

In this section, however, we discuss the
discovery of bugs during design verification
of autonomy software, before they occur dur-
ing a mission. As an example, we’ll briefly
describe one such bug that our model checker
found in the executive subsystem of the
DS- 1 Remote Agent.5

The correctness criteria given to a model
checker are expressed in a temporal logic that
includes logical predicates on states and tem-
poral operators on traces. Temporal logics dif-
fer in the specific temporal operators they pro-
vide. The temporal logic LTL includes the
temporal operators []P, meaning that the pred-
icate P is always true of the states in a trace,
and oP, meaning that P is eventually true of
a state in a trace. (This logic is neither strictly
less nor more powerful than the Tspec lan-
guage described below for execution-time
checking, but a significant area of overlap
exists between what properties the two lan-
guages can express.)

In the executive code for the DS-1 Remote
Agent, the model checker Spin6 found an
error trace that violates an eventually prop-
erty. Specifically, it found an error trace
where an executive-task program might
abort without eventually releasing its prop-
erty locks. This can cause a deadlock where
other tasks cannot execute because the
aborted task has not released the properties
they need. The properties locked by a task
are typically device states required for the
task’s successful execution-for example,
the requirement that the engine-gimbal actu-
ator be activated when the rocket engine is
firing. The error occurred in the executive’s
central core, which provides services analo-
gous to those of an operating system.

Figure 2 contains simplified extracts of the
executive code, converted to an Algol-like
syntax. The funcall-with-maintained-
property construct (see Figure 2a) defined
in the executive is called with two arguments:

SEPTEMBER/OCTOBER 1998

props, the properties to be maintained
during execution of the task’s body, and
closure, the body itself. funcall-with-
maintained-property in turn uses the
unwind-protect construct to provide a
wrapper around the body’s execution. This
ensures that if an abort occurs during the exe-
cution (for example, an error is signaled
because a locked property is violated, and the
error is unrecoverable), the locks are released
before the task exits.

The maintain-properties-daemon
(see Figure 2b) monitors property violations.
It invokes automatic recovery if a property
violation occurs; if the recovery does not suc-
ceed, an abort occurs. If a task’s body exe-
cutes without aborting, the release-locks
statement also executes afterwards. However,
this statement is not itself protected. Thus, if
an abort occurs during the execution of
release-locks, funcall-with-main-
tained-property exits-whether or not
the locks have been released. The bold arrow
in Figure 2a and the bold code in Figure 2b
indicate the interleaving of these two pro-
cesses that leads to the error trace.

Over the course of several days, a NASA
Ames design-verification team (Klaus Have-
lund, John Penix, and Michael Lowry) using
Spin found five concurrency bugs, including
the one above. Four of these bugs were
deemed important by the executive team,
which believes that traditional testing would
not have found these errors. In addition, the
checker verified that several properties were
correct; that is, it found no error traces.’

Run time verification

In contrast to design-time formal verifica-
tion, runtime formal verification checks the
implemented system’s behavior during exe-
cution, rather than a model’s properties at
design time. This verification is formal in that
it checks system behavior against a specifi-
cation (a model) of valid behavior using run-
time auditors (also called oracles). This

approach is an element of the larger field of
specification-based testing.8

Runtime verification has different bene-
fits and limitations than design-time model
checking. On the positive side, it checks the
implemented system rather than a design
model. So, it can detect implementation
errors and check behavior at a much more
detailed level. On the negative side, because
runtime verification checks behavior during
system execution, the checked behavior is
limited to the relatively few traces that get
exhibited during scenario-based system test-
ing and actual operation. Thus, we view run-
time verification as a partner of design-time
model checking, not an alternative to it.

In current practice, a variety of people,
including mission designers and system engi-
neers, levy requirements on software. Such
requirements are usually expressed in natural
language and are therefore not directly usable
for testing. To address that problem, we’ve
developed Tspec, a behavior-specification
language for nonprogrammers. Tspec uses a
notation that spacecraft system engineers and
software designers and developers find more
intuitive than linear temporal logic. They can
express behavioral constraints and expecta-
tions, using simple Tspec constructs. Such
specifications are then compiled into a con-
ventional programming language and linked
with a small class library to form behavior
auditors. When linked with the operational
software, these embedded behavior auditors
perform runtime verification.

Tspec constructs. Tspec currently offers five
types of behavior specifications-inline tests,
invariants, state machines, episodes, and re-
source constraints-that a user can instanti-
ate to specify the boundaries of acceptable
behavior. In all cases, if the observed behav-
ior violates the specified behavior, the viola-
tion is reported in a system-specific manner,
typically through logging and alerting. With
the exception of inline tests, which get eval-
uated in the direct flow of execution, the
behavior auditor associated with each speci-

47

invariant NoSunInCamera (lensCoverOpen, SunConeAngle) {
never (1ensCoverOpen kk SunConeAngle < 0.1)

etatemachine TrafficLight (color){

etatee {red, yellow, green)

transitions{
red -> green
green -> yellow
yellow -> red}

duration(red, 15, 60)
duration(green, 11, 5 8)
duration(yellow, 2, 4)
rate(4, 10, 300))

limits {

e~isodeldeasureField(calibrate, reading, poweron){
steppe {

update(ca1ibrate. true)
update(reading, BEGIN)
update(reading, END)

1
require {poweron == true
limits {

duration(90, 150)
end-begin-delay(60, infinity)

//Electric power: renewable resource, 150 watts.
reeource renewable power (150);

//show usage and freeing of power
when (xsspagwr, ON) consume (power, 45);
when (cameragwr, ON) consume (power, 6);

(4

Figure 3. Examples of Tspec constructs: (a) an invariant; (b) o state machine; (c) an episode; (d) a resource.

fication gets evaluated indirectly as an
observer of changes to specific variables
(described later in “Instrumenting the code”).

An inline test-like a C assert macre-
specifies a boolean expression that should
always evaluate to true when the control flow
passes through during execution.

An invariant specifies a logical condition
that should always evaluate to true. Unlike an
inline test, which is evaluated only when con-
trol flow passes through it, an invariant’s con-
dition is evaluated every time any of its vari-
ables changes value, regardless of which line
of code caused the value change. The invari-
ant in Figure 3a specifies a camera safety
requirement: never allow the lens cover to be
open if the cone angle between the camera
boresight and the sun vector is less than 0.1
radian. This example is simple enough that
you might consider extending the construct
to enforce the invariant rather than merely
check it. However, stating an invariant is gen-
erally much easier than enforcing it.

48

A state machine specifies constraints on
state-transition activity and is evaluated every
time a specified state variable changes value.
For example, the state machine in Figure 3b
specifies requirements on a traffic-light con-
troller in terms of legal transitions (for exam-
ple, red to green), state durations (for exam-
ple, the red-state duration must be between
15 and 60 seconds), and the expected transi-
tion rate (four to 10 transitions in any 300-
second interval).

An episode specifies a behavior fragment
having a beginning event and an ending
event, with potentially many intermediate
events, where the events are expected to
occur in the specified order. A change in any
of an episode’s event variables triggers eval-
uation. The episode in Figure 3c specifies
requirements on a science measurement
activity in terms of expected steps (three
update events are expected), required con-
ditions (poweron must remain true during
the episode), and timing constraints (the

episode should take at least 90 seconds but
not more than 150 seconds, and at least 60
seconds must separate the end of one episode
from the beginning of the next). Episodes
that remain unfinished at the end of a test sce-
nario are reported as warnings.

A resource specifies the type and amount
of an available resource and the condition
under which it is consumed. A violation oc-
curs if a resource limit is exceeded. Resources
are either depletable (for example, propellant)
or renewable (for example, power from a
solar panel). The resource in Figure 3d spec-
ifies the total amount of electrical power (150
watts) and the two conditions under which
that power is consumed (for example, the
camera draws six watts when it is powered
on). With additional when-consume state-
ments that detail the amount of power con-
sumption implied by specific states, the asso-
ciated auditor will report if the system’s
aggregate state ever implies greater than 150
watts of power consumption.

Behavior auditors. Auditors report not only
the occurrence of unexpected events and con-
ditions, but also the absence of expected
events and conditions. Discrete events, such
as the updating of a state variable or expira-
tion of a timer, trigger the auditing. The kinds
of behavior violations that these auditors
detect include conditions such as value out
of range, illegal state transition, out-of-order
event, resource threshold exceeded, state per-
sisted too long, and activity started but never
completed. The focus on discrete-event
behavior checks aims at detecting failures in
decision-based autonomous control systems.
Continuous control systems such p s attitude
control normally include specialized moni-
tors as part of the spacecraft’s fault-protec-
tion design that abstract behavior into a few
discrete states.

The auditors are not part of some tempo-
rary test scaffold; rather, they are embedded
in mission software. This gives them access to
potentially all software state variables; there-
fore they can check virtually any flight rule,
not just the subset that might be checkable
from a log of selected variables and events.
In addition, continuous checking during a
mission can provide early warning to ground
operations when something unexpected is
happening-whether because of hardware or
software failure. This changes the concept of
system testing from “checking the log files”
to embedded real-time behavior monitoring,
from development through deployment. This

IEEE INTELLIGENT SYSTEMS

approach truly implements a maxim of flight-
software engineering: “Test what you fly and
fly what you test.”

Instrumenting the code. Obviously, the
operational software must be instrumented
so that the behavior-auditing code can access
the required variables. In an object-oriented
design, this can be accomplished unobtru-
sively through the Observer design att tern.^
This mechanism provides a loose coupling
between the operational code and auditor
code, with no change in the operational code
as the auditor code is inserted or removed.

Currently, Tspec specifications are being
compiled into C++ for embedding in soft-
ware for JPL‘s X-33 Avionics Flight Exper-
iment. In this experiment the auditors will be
checking behavior visible in a telemetry
stream. Later, in JPL‘s X2000 program,
Tspec specifications will be embedded in
autonomous control loops.

R APPROACH TO, AND EXPERI-
ences with, design-time model checking and
runtime verification suggest several important
changes in software-development practices.

Although the design verification of the
executive code of DS-1 Remote Agent took
less than a week, constructing an abstracted
design in the Promela language (used by the
Spin model checker) from the Lisp code took
about one-and-a-half work-months. Achiev-
ing a model that was sufficiently abstracted
to be computationally tractable for verifica-
tion by Spin required significant effort for
two main reasons. First, model-checking lan-
guages today are impoverished compared to
programming or specification languages.
Consequently, Lisp is much more expressive
than Promela, and straightforward syntactic
translations of Lisp into Promela result in
code blowup. So, the translation was hand-
tailored. Second, much of the code was not
relevant to the correctness conditions on
which this exercise focused. Understanding
the code sufficiently to know how to prune
away the irrelevant portions of the design and
limit the degrees of freedom of the remaining
code without eliminating possible error

understanding is a prerequisite to perform-
ing good abstractions.

To enable automated design verification of
autonomy software, researchers are pursuing
automated modeling. We believe that with suf-

traces was difficult. For manual modeling,

SEPTEMBER/OCTOBER 1998

ficiently good facilities for abstraction, pro-
gramming languages and design-specifica-
tion languages can be used directly in model
checking. This will let developers use model
checking directly as part of a debugging pack-
age for autonomy-software design. Auto-
mated abstraction is a challenging research
goal being pursued by a number of collabo-
rating research institutions, including NASA
Ames. A near-term altemative is to provide an
abstraction workbench, in which autonomy
designers can annotate their code with direc-
tives for various kinds of abstractions, which
would be applied syntactically.

Furthermore, we believe that the concept
of “software delivery” should include not
only the operational code, but also the asso-
ciated verifiable behavior specifications.
When a developer receives the initial require-
ments for a software subsystem, he or she
should begin by expressing those require-
ments as verifiable behavior specifications.
This has the very positive effect of focusing
attention first on what the behavior should
be rather than on how to implement it.

Finally, test engineers should inspect the
behavior specifications. Behavior specifica-
tions are significantly shorter and easier to
understand than operational code, so this
type of inspection is more approachable than
a formal code inspection. Such inspections
help ensure that developers have adequately
specified the expected behavior and thereby
reduce the chance of undetected errors.
Developers should be praised when their
behavior specifications catch a bug, because
early automated detection greatly eases
debugging.

Acknowledgments
The research described in this aaicle was carried

out by members of the Automated Software Engi-
neering group at NASA Ames Research Center, and
by the Jet Propulsion Laboratory, Califomia Insti-
tute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
1. C. Perrow, Normal Accidents: Living with

High Risk Technologies, Basic Books, New
York, 1984.

2. 0. Grumberg, ed,, Proc. CAV ‘97: Ninth Int’l
Conj Computer-Aided Verification, Lecture
Notes in Computer Science 1254, Springer-
Verlag, Berlin, 1997.

3. J. Crow et al., “A Tutorial Introduction to
PVS,” presented at WIFT ’95: Workshop on
Industrial-Strength Formal Specification

Techniques, 1995; http://www.csl.sri.com/
sri-csl-fm.htm1.

4. M. Kaufmann and J. Moore, “An Industrial
Strength Theorem Prover for a Logic Based
on Common Lisp,” IEEE Trans. Software
Eng., Vol. 23, No. 4,Apr. 1997, pp. 203-213.

5. M. Lowry, K. Havelund, and J. Penix, “Veri-
fication and Validation of AI Systems That
Control Deep-Space Spacecraft,” in Founda-
tions of Intelligent Systems, Proc. Ismis ’97:
10th Int’l Symp. Methodologies for Intelli-
gent Systems, Lecture Notes in Artificial Intel-
ligence, No. 1325, Springer-Verlag, 1997.

6. G.J. Holzmann, “The Model Checker SPIN,”
IEEE Trans. Software Eng., Vol23, No. 5 ,
May 1997.

7. K. Havelund, M. Lowry, and J. Penix, F o m l
Analysis of a Space Craft Controller Using
Spin, NASAAmes Tech. Report 1770, NASA
Ames Research Center, Moffett Field, Calif.,
1998.

8. D. Richardson, S.L. Aha, and T. O’Malley,
“Specification-Based Test Oracles for Reac-
tive Systems,” Proc. 14th Int ’1 Con$ Software
Eng., IEEE Computer Society Press, Los
Alamitos, Calif., 1992, pp. 105-118.

9. E. Gamma et al., Design Patterns: Elements
ofReusable Object-Oriented Software, Addi-
son-Wesley, Reading, Mass., 1994.

Michael Lowry is a senior research scientist in
the Computational Sciences Division of NASA
Ames Research Center, and is the leader of the
Automated Software Engineering group. His re-
search interests have focused on high-assurance
program synthesis and verification and validation
techniques for complex systems. He serves on the
editorial board of Kluwer’s Journal ofAutomated
Software Engineering, and was the 1997 program
cochair of the IEEE Conference on Automated
Software Engineering. Previously, he was a re-
search scientist at the Kestrel Institute, where he
developed mathematical approaches to program
synthesis. He received his BS and MS in electrical
engineering and computer science from MIT, and
his PhD in computer science from Stanford Uni-
versity. Contact him at NASA Ames Research
Center, M/S 269-2, Moffett Field, CA 94035;
lowry @ptolemy.arc.nasa.gov.

Daniel Dvorak is a principle member of techni-
cal staff in the Information and Computing Tech-
nologies section of the Jet Propulsion Laboratory,
where his interests have focused on monitoring,
fault detection, and system-level testing of au-
tonomous systems. Previously, he worked at Bell
Laboratories on the monitoring of telephone
switching systems and on the development of R++,
a rule-based extension to C++. He received his BS
in electrical engineering at the Rose-Hulman Insti-
tute of Technology, his MS in computer engineer-
ing at Stanford University, and his PhD in com-
puter science at the University of Texas at Austin.
Contact him at the Jet Propulsion Laboratory, 4800
Oak Grove Dr., M/S 301-270, Pasadena, CA
91 109-8099; daniel.dvorak@jpl.nasa.gov.

49

http://www.csl.sri.com
mailto:ptolemy.arc.nasa.gov
mailto:daniel.dvorak@jpl.nasa.gov

